1 (i) Find the first three terms of the binomial expansion of $\frac{1}{\sqrt[3]{1-2 x}}$. State the set of values of $x$ for which the expansion is valid.
(ii) Hence find $a$ and $b$ such that $\frac{1-3 x}{\sqrt[3]{1-2 x}}=1+a x+b x^{2}+\ldots$.
[3]

2 Find the first three terms in the binomial expansion of $(4+x)^{\frac{3}{2}}$. State the set of values of $x$ for which the expansion is valid.

3 (i) Express $\frac{x}{(1+x)(1-2 x)}$ in partial fractions.
(ii) Hence use binomial expansions to show that $\frac{x}{(1+x)(1-2 x)}=a x+b x^{2}+\ldots$, where $a$ and $b$ are
constants to be determined.

State the set of values of $x$ for which the expansion is valid.

4 Find the first four terms in the binomial expansion of $\sqrt{1+2 x}$. State the set of values of $x$ for which the expansion is valid.

5 Find the first three terms in the binomial expansion of $\sqrt[3]{1+3 x}$ in ascending powers of $x$. State the set of values of $x$ for which the expansion is valid.

6 (i) Given that

$$
\begin{equation*}
\frac{3+2 x^{2}}{(1+x)^{2}(1-4 x)}=\frac{A}{1+x}+\frac{B}{(1+x)^{2}}+\frac{C}{1-4 x} \tag{4}
\end{equation*}
$$

where $A, B$ and $C$ are constants, find $B$ and $C$, and show that $A=0$.
(ii) Given that $x$ is sufficiently small, find the first three terms of the binomial expansions of $(1+x)^{-2}$ and $(1-4 x)^{-1}$.

Hence find the first three terms of the expansion of $\frac{3+2 x^{2}}{(1+x)^{2}(1-4 x)}$.

7 Find the first 4 terms in the binomial expansion of $\sqrt{4+2 x}$. State the range of values of $x$ for which the expansion is valid.

